

Assessment of nuclear data libraries for SFR simulation using SCALE Code System

A. Jiménez-Carrascosa*, N. García-Herranz, O. Cabellos

Universidad Politécnica de Madrid (UPM), Spain

*currently at Paul Scherrer Institut (PSI), Switzerland

2023 SCALE Users' Group Workshop 26-28 November 2023

Oak Ridge National Laboratory (hybrid meeting)

Motivation

- Increasing interest in liquid metal fast reactors (LMFR)
- In recent years, UPM has participated into different European R&D projects
- ... with a common objective: validate computational approaches to support the development of LMFR
- This involves the verification and validation (V&V) of computational tools and associated databases.
- Our activities rely on the use of SCALE Code System

ASTRID (1500 MWth)

LFR ALFRED (300 MWth)

LFR MYRRHA

(100 MWth)

Motivation

- Nuclear data libraries, as part of the computational scheme, are subject to V&V
- A reasonable level of knowledge has still not been reached for all the isotopes and reactions involved in spite of several decades of research
- The use of different nuclear data libraries may lead to very different results, with a different uncertainty quantification.
- Then, V&V activities carried out in our work aim at evaluating the performance of the JEFF-3.3 library for SFR simulation.
- Systematic use of legacy integral experiments provided by ICSBEP and IRPhEP databases.

Na-23 (n,n') cross section from JEFF-3.3 and ENDF/B-VII.1

Nuclear data assessment: pipeline

A. Jiménez-Carrascosa, N. García-Herranz. "Use of SCALE for the analysis of Sodium Fast Reactors," SCALE Users' Group Workshop 2021.

ESFR
European Sodium Fast Reactor
(Commercial-size 3600 MWth core)¹

ASTRID-like
Advanced Sodium Technological Reactor for Industrial Demonstration
(Medium-size 1500 MWth core)²

SCALE 6.2.3 Code System

Advanced reactor evaluation

- Criticality calculations using KENO-VI
- CE JEFF-3.3 and CE ENDF/B-VII.1
- Sensitivities using TSUNAMI-3D and TSAR
- Uncertainties via the Sandwich Rule and 33g JEFF-3.3 covariance matrix (COVERXformatted)

<u>Integral experiments evaluation</u>

- Criticality calculations using KENO-VI
- CE JEFF-3.3, CE ENDF/B-VII.1 and/or CE JEFF-3.1.1
- Two different sets of experiments,
 - ICSBEP criticality experiment benchmarks
 - IRPhEP reactor physics experiment benchmarks with reactivity effects

Framework of Data Assimilation: GLLS-based TSURFER module

Information provided by experimental data is transferred to the employed nuclear data library, JEFF-3.3, to improve the model output with constraint uncertainties.

Impact of different nuclear data libraries on SFR parameters:

Reactor	Response	Nominal value JEFF-3.3	Nominal value ENDF/B-VII.1	Difference (pcm)	Uncertainty [%] JEFF-3.3 COV	Target accuracy (OECD/NEA WPEC SG46)
ESFR	Multiplication factor k_{eff}	1.00378	1.00072	306	1.03	0.3%
	Sodium void effect $ ho_{Na}$	500	270	230	15.7	5%
	Doppler effect $ ho_T$	-134	-121	-13	4.4	5%
ASTRID	Multiplication factor k_{eff}	1.00296	0.99936	360	0.97	0.3%
	Sodium void effect $ ho_{Na}$	-375	-581	206	22.55	5%

- JEFF-3.3 overestimates both multiplication factor and sodium void worth effect compared to ENDF/B-VII.1.
- Target accuracies exceeded for k_{eff} and ρ_{Na} .

Integral experiments selection (ICSBEP)

A set of **34 integral experiments benchmarks from ICSBEP** is selected based on the representativity factor with ESFR (TSUNAMI-IP):

$$c_{k} = \frac{S_{R,\alpha}^{T} V_{\alpha,\alpha} S_{E,\alpha}}{\sqrt{(S_{R,\alpha}^{T} V_{\alpha,\alpha} S_{R,\alpha})(S_{E,\alpha}^{T} V_{\alpha,\alpha} S_{E,\alpha})}}$$

Benchmark experimental series	Evaluators		
MIX-COMP-FAST (4 cases)	ANL, USA		
MIX-MET-FAST (6 cases)	LLNL and ANL, USA		
MIX-MET-INTER (2 cases)	ANL, USA		
PU-MET-FAST (22 cases)	LLNL and LANL, USA / IPPE, VNIEEF and CML, Russia		

- Average C-E deviation of 440 pcm for JEFF-3.3 results while both JEFF-3.1.1 and ENDF/B-VII.1 perform slightly better (MAD: 329 and 368 pcm, respectively)
- Special attention should be paid to MIX-COMP-FAST benchmarks since associated trends will similarly impact on selected SFR systems.
- Systematic overestimation for the MIX benchmarks
- Additionally, PU-MET-FAST cases ensure a proper adjustment for Pu isotopes.

- Evaluation of nuclear data-induced uncertainty for each case.
- Adjustment margin within the 1σ range.
- Experiment merit: are the biases already covered by experimental and computational uncertainties?
- Role of chi-filtering.

- The established experimental database is applied with the aim of improving JEFF-3.3 results.
- Experiments might be ommitted through the chi-filtering in TSURFER.
- The following information is required before performing the adjustment:
 - Prior JEFF-3.3 nuclear data covariance matrix.
 - Sensitivity profiles for every experiment response,
 - Active responses: integral experiment benchmarks,
 - Passive responses: target SFR designs under analysis,
 - Experiment covariance data: scarcely available! Conservative assumptions to be made.
- As a result, a set of MG adjusted cross section and covariance data set is obtained.

MG cross-section adjustment leads to the following biases reduction

- Mean Absolute Deviation reduces from 440 to 196 pcm
- A systematic reduction of C-E is obtained for MIX benchmarks
- For MIX-COMP-FAST, adjustment provides a more consistent C/E observation
- Major adjustments for the following isotopes:
 - Pu-239 (n,f), χ, (n,γ), nubar
 - U-238 (n,n'), (n,γ), (n,f)
 - Pu-240 (n,f)
 - Fe-56 (n,n')

Data assimilation for ICSBEP data set

Data assimilation for ICSBEP data set

Impact of data assimilation on SFR designs parameters

Reactor	Response	Prior value	Posterior value	Bias (pcm)	Prior uncertainty (%)	Posterior uncertainty (%)
ESFR	Multiplication factor k_{eff}	1.00378	1.0005	-329	1.036	0.294
	Sodium void effect $ ho_{Na}$	500	558	+58	15.68	11.11
	Doppler effect $ ho_T$	-134	-134	0	4.41	2.45
ASTRID	Multiplication factor k_{eff}	1.00296	0.99926	-370	0.970	0.237
	Sodium void effect $ ho_{Na}$	-375	-300	+75	22.55	14.92

- Significant decrease for multiplication factor values, applying to both designs.
- Strong uncertainty reduction, especially for k_{eff} values fulfilling target accuracies!
- Reinforcement of the sodium void effect. This is not consistent with our extended observations!

C/E observations for SVR effects

- Significant and systematic overestimation for SVR when using JEFF-3.3
- This trend is observed for several ZPPR experimental measurements (high c_k value compared to ESFR SVR)
- A complete IRPhEP database should be selected to perform more comprehensive adjustments, involving reactivity effects

A set of 12 reactor physics experiment benchmarks from ICSBEP is selected based on the representativity factor with ESFR, with 5 sodium void reactivity cases associated as well as experiments dedicated to Doppler effect and Control Rod Worth analysis (SEFOR, FFTF).

Data assimilation for IRPhEP data set

Impact of data assimilation on SFR designs parameters

Reactor	Response	Prior value	Posterior value	Bias (pcm)	Prior uncertainty (%)	Posterior uncertainty (%)
ESFR	Multiplication factor k_{eff}	1.00378	1.00130	-250	1.036	0.306
	Sodium void effect $ ho_{\it Na}$	500	450	-50	15.68	7.71
	Doppler effect $ ho_T$	-134	-136	-2	4.41	2.56
ASTRID	Multiplication factor k_{eff}	1.00296	1.00040	-260	0.970	0.249
	Sodium void effect $ ho_{Na}$	-375	-443	-68	22.55	10.02

- Results are now consistent with derived trends associated to representative experiments.
- k_{eff} results are mostly improve due to U-239 (n,n'), (n,f) and (n, γ) and Pu-239 $\bar{\nu}$ adjustments.
- ρ_{Na} values mostly improve due to Pu-239 (n,f) and Fe-56 (n,n) changes.

Conclusions and future work

Main outcomes of the analysis

- Framework for nuclear data validation targeting SFR analyses: recommendations on related ND needs
- Role of integral experiments on the nuclear data life cycle in combination with data assimilation techniques
- This framework allows to evaluate the nuclear data performance for SFR analyses, providing recommendations on related needs and priorities.
- TSURFER as a key computational tool.

Future work

- SCALE/SAMPLER methodology for assessing correlation in experiment uncertainties.
- Extension of SCALE capabilities to include kinetic parameters.
- Comprehensive experimental database for extended adjustment analyses.
- SCALE is being applied for the assessment of the latest JEFF-4T2 library.

Acknowledgments

This work is part of the SANDA project (Supplying Accurate Nuclear Data for energy and non-energy Applications) that has received funding from the European Union's H2020/Euratom under grant agreement No. 847552